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INTRODUCTION

Breckenridge et al. (1975), Hsu (1985) and Pao (1978) adapted
approaches from seismology to calculate the response at the
surface of an infinite half-space and an infinite plate.  These
approaches have found use in calibrating acoustic emission (AE)
transducers.  However, it is difficult to extend this theoretical
approach to AE testing of practical structures.  Weaver and Pao
(1982) considered a normal mode solution to the Lamb equations.
Hutchinson (1983) pointed out the potential relevance of Mindlin's
plate theory (1951) to AE.  Pao (1982) reviewed Medick’s (1961)
classical plate theory for a point source, but rejected it as
useful for AE and no one seems to have investigated its relevance
to AE any further.  

Herein, a normal mode solution to the classical plate bending
equation was investigated for its applicability to AE.  The same
source-time function chosen by Weaver and Pao is considered.
However, arbitrary source and receiver positions are chosen
relative to the boundaries of the plate.  This is another
advantage of the plate theory treatment in addition to its
simplicity.  The source does not have to be at the center of the
plate as in the axisymmetric treatment.  The plate is allowed to
remain finite and reflections are predicted.  The importance of
this theory to AE is that it can handle finite plates, realistic
boundary conditions, and can be extended to composite materials.

 
---------------
1 Work supported by NASA Langley Research Center
2 Dept. of Physics
  University of Denver   
  Denver, CO 80208-0177
3 Nondestructive Measurement Science Branch
  NASA LaRC, Hampton, VA 23681-0001

1



THEORETICAL 
 

The normal mode solution procedure has been widely applied to a
number of elasticity problems including strings, beams, membranes,
and plates.  This solution technique is discussed in detail by
Graff (1991).  For a thin, homogeneous, isotropic plate, the
governing equation of motion from classical plate theory is

              D∇ 4
w(x,y,t) + ρh∂2w(x,y,t)/∂t2 = f(x,y,t)         (1)

where the x and y axes lie in the plane of the plate and the z
axis is perpendicular to the plane of the plate.  Time is

represented by t, ∇ 4
= (∂2/∂x2 + ∂2/∂y2)

2
 and f(x,y,t) is the force

(N/m2) applied in the z direction.  w(x,y,t) is the transverse

displacement,  ρ the density, and h the plate thickness.  D is the
bending stiffness given by

D = Eh3/12(1-ν2)                               (2)

where E is Young's modulus and ν is Poisson's ratio.

A step forcing function at x=ξ, y=ζ, given by

f(x,y,t) = Pδ(x-ξ)δ(y-ζ)H(t)                   (3)

where P is the amplitude of the step is used and the plate is
assumed to be simply supported at its boundaries, x=0, x=l, y=0
and y=w.  The resulting normal mode solution is given by 

w(x,y,t) = 4P
ρhlw

 
sinαnxsinγmysinαnξsinγmζ(1-cosωnmt)

ωnm
2

∑
n,m

 

      (4)

where αn=nπ/l and γm=mπ/w for n,m=1,2,...,

ωnm = π2 n2
l2
 + m

2

w2
 a                     (5)

and a2 =D/ρh.  

This result is to be compared with Medick's (1961) result for an
infinite plate subject to a step function in time at the origin
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           w(r,t) = P

4π(ρhD)1/2
 tH(4ar2/t)                   (6)

where

H(x) = π/2 - Si(x) + xCi(x) - sin(x)             (7)

with Si(x) and Ci(x) being the sine and cosine integrals,
respectively.  Equations (4) and (6) were programmed and evaluated
for several source to receiver distances for an aluminum plate and
compared with experimental data.

EXPERIMENTAL 

A pencil lead break provided a source which approximates a
vertical step function, but the magnitude of the force was not
measured.  The aluminum plate had dimensions l=0.381 m., w=0.508
m., and h=0.003175 m.  A 1.27 cm. diameter 3.5 MHz ultrasonic
transducer (Panametrics) was used as the receiver because of its
wideband behavior in the frequency range of interest (20-500 KHz).
Papadakis (1980) pointed out that these transducers should provide
flat frequency response from near zero frequency to just below
their resonance frequency and thus make high fidelity AE sensors.
The large diameter of this sensor is not a concern in these
measurements because of the long wavelengths of the flexural mode
signals being measured.  This sensor has been shown to be
displacement sensitive in previous research by Prosser (1991).
Although the frequency response of this sensor is much flatter and
broader than conventional resonant AE sensors, its response does
drop off at low frequencies.  The frequency response of the
transducer was determined and applied to the theoretical
calculations.  Because the frequency of each normal mode summed in
the theoretical calculation is known, it was easier to apply the
transducer filter response to the theoretical calculations than to
the measured data.  

RESULTS AND DISCUSSION 

Figure 1 shows a comparison between our normal mode solution and
Medick's integral transform solution for the same source to
receiver distance on the aluminum plate.  This distance and the
length of time shown in the plot in this figure were chosen such
that there are no reflections from the plate boundaries included
in the waveforms.  Reflection signals are predicted in the normal
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mode solution but neglected by the Medick (1961) infinite plate
solution.  Also, since this is a comparison of theory with theory,
the transducer response filtering was not applied.  It can be seen
that the agreement is quite good for n=m=100.  From equation (5),
the highest frequency term in the normal mode solution is 834 KHz
which is well above those seen in the experimental data.  The
10,000 terms took less than five minutes to compute on a 68030
based microcomputer for 512 points.  

Figures 2 and 3 show the measured waveforms and the theoretical
waveforms at distances of 0.1016 m. and 0.1778 m. from the source.
According to observations by Medick (1961), this theory should
agree with experiment when the wavelength is greater than 16 times
the thickness of the plate.  This corresponds to a time greater
than 

                             τc = 2 xc  .                       (8)

where c is the characteristic velocity (E/ρ)1/2.  This implies that
theory and experiment should begin to agree at the point indicated
by the arrow in the figures.  It can be seen that there is good
agreement beyond this initial critical time.  Note that the
extensional mode can be seen in each of the experimental
waveforms.  Due to the higher wavespeeds of the extensional mode,
it begins to separate from the flexural mode as the source to
receiver distance increases.  Figure 4 shows the response for
longer times.  It can be seen that there are reflections present
in both theory and experiment which would not be predicted by
theory for an infinite plate.  It is interesting to note, as
Medick (1961) does, that the quantitative predictions of the
classical theory retain their accuracy even for points only
several plate thicknesses removed from the loading area as
illustrated for the response of the plate at a distance of 0.1016
m from the source.
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Figure 1.  Plate response to a step function for a source to
receiver distance of 0.127 m.
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Figure 2.  Lead break at 0.1016 m from receiver.
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Figure 3.  Lead break at 0.1778 m from receiver.
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Figure 4.  Theory and experiment compared at longer time shows
reflections.
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